Ihtc14-22515 Experimental Characterization of Single and Multiple Droplet Impingement on Surfaces Subject to Constant Heat Flux Conditions

نویسنده

  • Guillermo Soriano
چکیده

Spray cooling is one of the most promising technologies in applications which require large heat removal capacity in very small areas. Previous experimental studies have suggested that one of the main mechanisms of heat removal in spray cooling is forced convection with strong mixing due to droplet impingement. These mechanisms have not been completely understood mainly due to the large number of physical variables, and the inability to modulate and control variables such as droplet frequency and size. Our approach consists of minimizing the number of experimental variables by controlling variables such as droplet direction, velocity and diameter. An experimental study of single and multiple droplet impingements using HFE 7100 as the cooling fluid under constant heat flux conditions is presented. A monosized droplet train is produced using a piezoelectric droplet generator with the ability to adjust droplet frequency, diameter and velocity. In this study, heaters consisting of a layer of Indium Tin Oxide (ITO) as heating element, and silicon substrates are used. Film morphology was characterized using a Laser Induced Fluorescence (LIF) technique with a focus on the droplet impact zone by measuring variables such as film thickness and diameter of the impact zone. Infrared Thermography was used to measure surface temperature at the liquid-solid interface. The IR thermography technique was also used to characterize temperature gradients at the droplet impact zone. The results and effects of droplet frequency, fluid flow rate, and fluid temperature on heat flux are also presented. INTRODUCTION Current development in electronic devices places a significant demand on thermal management systems to dissipate high heat flux densities in an economic manner in order to maintain adequate junction temperatures at the chip level. The high heat fluxes require a phase change cooling methodology instead of traditional single phase options. Among the phase-change cooling technologies, spray and jet impingement cooling are the most promising options [1-2]. Liquid droplet sprays and jet impingement cooling have been widely used in the metal manufacturing industry and have been shown capable of high heat removal rates. Spray cooling and droplet impingement cooling can achieve peak heat fluxes several times superior to critical heat flux in pool boiling [2-3]. Most research on spray cooling has been experimental in nature focusing on the boiling regime with limited ability to vary experimental parameters as shown in the work of Toda [4], Yang [5-6], Tilton [7], and Sodtke and Stephan [8]. A common agreement among researchers is that the physics of spray cooling are insufficiently understood due to complexity of the interplay between multiple drop impingement events and bubble nucleation, rendering the heat transfer processes in the thin liquid film extremely chaotic. One promising avenue for uncovering the interplay between the dominant physical mechanisms in spray cooling is to remove the randomness in incident droplet size, frequency of arrival, and velocity at impingement. This can be achieved by carefully controlling the diameter and velocity of incident droplets, for instance, through the use of a piezoelectric droplet generator. Under this configuration, key non-dimensional quantities such as Weber and Reynolds numbers as well as the ratio of film height to droplet diameter, among others, can be manipulated at

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications

A numerical and experimental investigation was conducted to analyze dropwise evaporative cooling of heated surfaces with various wettability characteristics. The surface wettability was tuned by nanostructure modifications. Spray-cooling experiments on these surfaces show that surfaces with better wettability have better heat transfer rate and higher critical heat flux (CHF). Single droplet imp...

متن کامل

An Analytical Approach to the Effect of Viscous Dissipation on Shear-Driven Flow between two parallel plates with Constant Heat Flux Boundary Conditions

An investigation has been made to analyze the effects of viscous dissipation on the heat transfer characteristics for both hydro-dynamically and thermally fully developed, laminar shear driven flow between two infinitely long parallel plates, where the upper plate is moving in an axial direction at a constant speed. On the basis of some routine assumptions made in the literature, a close form a...

متن کامل

Evaporation Characteristics of Diesel and Biodiesel Fuel Droplets on Hot Surfaces

In CI engines, the evaporation rate of fuel on various hot surfaces, including the combustion chamber, has a significant effect on deposit formation and accumulation, the exhaust emissions of PM and NOx, and their efficiency. Therefore, the evaporation of liquid fuel droplets impinging on hot surfaces has become an important subject of interest to engine designers, manufacturers, and researcher...

متن کامل

Optimizing naturally driven air flow in a vertical pipe by changing the intensity and location of the wall heat flux

Heat transfer from the internal surfaces of a vertical pipe to the adjacent air gives rise to the air flow establishment within the pipe. With the aim of optimizing the convective air flow rate in a vertical pipe, the details of the flow and thermal fields were investigated in the present study. Conservation equations of mass, momentum, and energy were solved numerically using simple implicit f...

متن کامل

Numerical investigation of heat transfer in a sintered porous fin in a channel flow with the aim of material determination

Extended surfaces are one of the most important approaches to increase the heat transfer rate. According to the Fourier law, the heat transfer increases by increasing the contact surface of body and fluid. In this study, the effect of heat transfer has been investigated on two sets of engineered porous fins, in which the balls with different materials are sintered together. The fluid flow throu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010